Quantifying Intrinsic and Extrinsic Variability in Stochastic Gene Expression Models
نویسندگان
چکیده
Genetically identical cell populations exhibit considerable intercellular variation in the level of a given protein or mRNA. Both intrinsic and extrinsic sources of noise drive this variability in gene expression. More specifically, extrinsic noise is the expression variability that arises from cell-to-cell differences in cell-specific factors such as enzyme levels, cell size and cell cycle stage. In contrast, intrinsic noise is the expression variability that is not accounted for by extrinsic noise, and typically arises from the inherent stochastic nature of biochemical processes. Two-color reporter experiments are employed to decompose expression variability into its intrinsic and extrinsic noise components. Analytical formulas for intrinsic and extrinsic noise are derived for a class of stochastic gene expression models, where variations in cell-specific factors cause fluctuations in model parameters, in particular, transcription and/or translation rate fluctuations. Assuming mRNA production occurs in random bursts, transcription rate is represented by either the burst frequency (how often the bursts occur) or the burst size (number of mRNAs produced in each burst). Our analysis shows that fluctuations in the transcription burst frequency enhance extrinsic noise but do not affect the intrinsic noise. On the contrary, fluctuations in the transcription burst size or mRNA translation rate dramatically increase both intrinsic and extrinsic noise components. Interestingly, simultaneous fluctuations in transcription and translation rates arising from randomness in ATP abundance can decrease intrinsic noise measured in a two-color reporter assay. Finally, we discuss how these formulas can be combined with single-cell gene expression data from two-color reporter experiments for estimating model parameters.
منابع مشابه
The Psychological Function of Nostalgia: Increasing Intrinsic Self-Expression and Decreasing Extrinsic Self-Definition
Previous findings have shown the many functions of nostalgia, for example, increasing mental health, and the current research aimed to explain those findings by testing the theoretical explanation that the benefits of nostalgia come from the fact that nostalgia reminds us of our intrinsic self. Aiming to investigate the effect of nostalgia on authenticity (intrinsic self-expression) and extrins...
متن کاملStochastic promoter activation affects Nanog expression variability in mouse embryonic stem cells
Mouse embryonic stem cells (mESCs) are self-renewing and capable of differentiating into any of the three germ layers. An interesting feature of mESCs is the presence of cell-to-cell heterogeneity in gene expression that may be responsible for cell fate decisions. Nanog, a key transcription factor for pluripotency, displays heterogeneous expression in mESCs, via mechanisms that are not fully un...
متن کاملApplication of stochastic phenomenological modelling to cell-to-cell and beat-to-beat electrophysiological variability in cardiac tissue
Variability in the action potential of isolated myocytes and tissue samples is observed in experimental studies. Variability is manifested as both differences in the action potential (AP) morphology between cells (extrinsic variability), and also 'intrinsic' or beat-to-beat variability of repolarization (BVR) in the AP duration of each cell. We studied the relative contributions of experimental...
متن کاملFrequency domain analysis of noise in simple gene circuits.
Recent advances in single cell methods have spurred progress in quantifying and analyzing stochastic fluctuations, or noise, in genetic networks. Many of these studies have focused on identifying the sources of noise and quantifying its magnitude, and at the same time, paying less attention to the frequency content of the noise. We have developed a frequency domain approach to extract the infor...
متن کاملEfficient simulation of intrinsic, extrinsic and external noise in biochemical systems
Motivation Biological cells operate in a noisy regime influenced by intrinsic, extrinsic and external noise, which leads to large differences of individual cell states. Stochastic effects must be taken into account to characterize biochemical kinetics accurately. Since the exact solution of the chemical master equation, which governs the underlying stochastic process, cannot be derived for most...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013